Nulling Interferometry

SPIE

March 28, 2000

Gene Serabyn JPL

Planet Detection

- **Indirect Methods** (= perturbations to stellar parameters):
 - Stellar Position
- Astrometry
- Stellar Velocity
- → Radial Doppler Shifts
- Stellar Intensity
- Transits, Microlensing
- **Direct Methods** (= direct detection of planetary radiation)
 - Direct Imaging
- Very Large Telescopes
- Starlight Suppresion →
- Coronagraphy,
- Nulling Interferometry

Comparison of direct approaches

- 1 AU ⇔ 1.0 arcsec at 1 pc 0.1 arcsec at 10 pc
- 10-m aperture at $\lambda = 10 \mu m$ has $\lambda/D = 200 \text{ mas}$
- To see an exact Earth-analog at 1 AU from its star:

Nulling Interferometry: $\theta < \lambda/D$ (< few 0.1 arcsec)

stellar distance $\approx 10 \text{ pc}$

Coronagraphy: $\theta > 5 \lambda/D (> 1-2 \text{ arcsec})$

stellar distance ≈ 1 pc

Direct imaging: $\theta > 10 - 30 \lambda/D$

telescope diameter > 20 m

• With 10 m or smaller apertures, only nulling interferometry can observe sufficiently close to large numbers of nearby stars in the mid-infrared, where the contrast is reduced.

Optimal waveband for direct planet detection

• Visible Light:

Reflected Stellar Flux

Contrast = $10^9 - 10^{10}$

• Thermal Infrared:

Thermal Planetary Emission

 $Contrast = 10^6 - 10^7$

Comparison of MIR Flux Levels

Distance = 10 pc Wavelength = $10 \mu \text{m}$

• Signal strengths:

G2 star 2.2 Jy
Exozodiacal emission 200 μ Jy
Jupiter 2 μ Jy
Earth 0.3 μ Jy

• Solar-level exozodiacal emission is much brighter than planetary emission

• Backgrounds:

Zodiacal emission 800 μ Jy Sky (emissivity = 0.1) 30 Jy

Dust Disks around Nearby Stars

Visible Wavelengths

Submillimeter

- Both images show dust primarily at > 30 AU
- Cold dust at Kuiper-belt-like radii
- IRAS: 15% of nearby MS stars show cold dust (to limit of 100 zodi)

Nulling Roadmap

Target at 10 pc

- **Keck:** Characterize exozodiacal MIR emission around nearby stars.
 - Our 10 μ m integrated zodiacal flux = 10^{-4} of solar flux 10^{-6} of thermal sky background
 - ⇒ Null star **and** remove background.
- **SIM:** demonstrate optical nulling with nanometer-level control needed by TPF.
 - 10⁻⁶ null @ 10 $\mu m \Leftrightarrow$ 10⁻⁴ null @ 1 μm TPF: detect planets at 10 $\,\mu m$ in the presence of stellar, zodi, and exozodi fluxes
 - MIR (7-20 μ m) null of 10^{-6} .

General achromatic nulling requirements

• Desire $E_1 - E_2 = 0$

 \mathbf{E}_2

- High degree of symmetry and stability required:
 - E fields in the two input beams oppositely oriented
 - Equal beam intensities
 - Zero relative path difference
 - Simultaneous zero of OPD for both polarizations
 - Simultaneous zero of OPD across aperture:

Surfaces typically limit null depth to ≈ 1- Strehl ratio, or few %

- ⇒ wavefront cleanup with single mode spatial filter required
- Simultaneous cancellation at all wavelengths in the passband BW evolution: SIM 20%, Keck 30 50%, TPF 100 %
- Small stellar angular diameter

Achromatic Destructive Interference

- Normal ``constructive'' 2-beam interferometer: $I_{\text{out}} = I_{\text{in}} (1 + V \cos \varphi) / 2$
- Bandwidth limitation to destructive interference minima:

$$\frac{I_{\min}}{I_{\max}} = \frac{1}{2} \left(1 - \operatorname{sinc} \frac{\pi}{2} \frac{\Delta \lambda}{\lambda} \right)$$

- For bandwidths of 5, 10, 20, 30, 40, and 50%, the deepest cancellation is 0.05, 0.2, 0.8, 1.8, 3.2, and 5%.
- Deeper cancellation requires an achromatic approach, e.g. a relative field flip:

$$I_{\text{out}} = I_{\text{in}} (1 - V \cos \varphi) / 2$$

Electric Field Reversal

- Achromatic field reversal can be effected by means of:
- Geometric field flip: rotational shearing interferometer
- Through-focus field flip: (also RSI)
- Phase retardation: chromatic waveplate

Beam Combination in a Rotational Shearing Interferometer

Rooftop Mirrors

• Rooftop flips E-field component which is normal to roof line

Orthogonal Rooftop Mirrors

- Electric field vectors orthogonal to rooftop axis flipped by 180 degrees.
- Output beams have polarizations rotated 180 degrees w.r.t. each other.
- Output apertures are rotated 180 deg. w.r.t. each other.

Polarization Compensation

Views looking back into the beam

- Output images and electric fields rotated by 180 deg.
- Asymmetric: one arm has 2 s reflections, other has 2 p refl.
- Add fold mirror in each arm to symmetrize reflections:

Implementation 1: rotational shearing interferometer

• Advantages:

- Relies solely on flat mirrors
- Achromatic, geometric π phase flip
- Phase flip separated from OPD
- Nearly perfect symmetry (with extra folds)
- Automatic power balance:
 Beamsplitter used in double-pass, so same RT product multiplies both inputs
- High R/T ratio tolerance at 2-pass b.s. (R near 0.5 only maximizes throughput)

• Drawbacks:

- High quality rooftop reflectors needed

Both:

- 2 nulling outputs

Implementation 2: Phase shift through focus

- Passing through focus inverts aperture, adds achromatic 180 degree phase shift.
- Replace rooftops by cat's eyes:
 - one secondary flat, at focus
 - other secondary curved, prior to focus

Advantages:

- Achromatic 180 degree phase flip
- Phase flip separated from OPD
- Relaxed b.s. R/T requirements

· Disadvantages:

- Differing angles of incidence on secs.
- Point focus on flat secondary
- 2 nulled outputs

Implementation 3: dielectric waveplate

- 90 degree phase shift at b.s.
- Dielectric plate compensates for b.s. plate; adds another 90 degree phase shift.
- Advantages:
 - simple layout and components
 - no wavefront inversion
 - one nulling output
 - can use a second waveband to sense OPD
- Challenges:
 - Requires highly accurate coatings: single-pass beamsplitter requires nearly perfect R/T match for intensity balance
 - Requires highly accurate tailoring of compensator refractive indices across band.
 - Phase flip and OPD not independent.

UofA MMT MIR nulling • Waveplate scheme • On telescope • Cancelled 2 panels of MMT • Rejection of 1/24 achieved • No OPD control Constructive destructive a Ori FWHM 1.5' FWHM 1.8' FWHM 2.4'

Wavefront Cleanup

- Aberrated wavefronts prohibit simultaneous field cancellation across the wavefront. N limited to about 1-S.
- Wavefront cleanup required for deep nulls
- Effected by means of a spatial filter in output focal plane
- Only the point-spread function core is transmitted
- Limits nulling to a single spatial mode of the telescope

Sources of null degradation

Finite Stellar Diameter
 Static

• Nonunity visibility:

- Wavefront errors - removed by spatial filtering Static

- Polarization rotation mismatch Static

- Intensity mismatch: transmission asymmetries, Static pointing jitter induced scintillations Fluctuating

• Nonzero phase:

Optical path jitter
 Differential s-p polarization delay (d1-d2 below)
 Static

Dispersion

Static

Null Depth Definition

• Null depth: $N \equiv I_{\rm min} / I_{\rm max}$ where $I_{\rm out}$ and $I_{\rm in}$ are the nuller throughputs in the destructive and constructive states, respectively.

$$N = (1 - V \cos \phi) / 2.$$

- Both V<1 and $\phi \neq 0$ limit null depth and so drive the requirements.
- For V=1 and small phase errors $N = (\phi/2)^2 = (\pi x/\lambda)^2$
- For perfect phase matching N = (1-V)/2.
- Examples:

For
$$N = 10^{-4}$$
, $V = 0.9998$.

For N =
$$3 \times 10^{-5}$$
, $\lambda = 600$ nm, $x = 1$ nm

For
$$N = 3 \times 10^{-5}$$
, $\lambda = 10 \ \mu m$, $x = 17 \ nm$

How deep is your null?

• Fundamental limit: Nonzero stellar diameter limits N to:

$$N = \frac{\pi^2}{16} \left(\frac{\theta_{dia}}{\lambda / b} \right)^2$$

- For a G2 star @10 pc, with an angular diameter of 0.93 mas,
 N=3e-5 at 0.63 μm requires a projected baseline of < 1.0 m.
- Note: A flux reduction by 10⁻⁴ corresponds to 10 magnitudes: On SIM, this leaves a flux of order 1000 photons/s/aperture.

SIM requirements from null depth

	Null Constraint Contribution Requirement				
Stellar Diameter Leakage	$\theta_{\rm dia} < 4\lambda\sqrt{N}/\pi b$	< 3e-5	b < 1.1 m		
Optical Path Errors	$x < \lambda \sqrt{N} / \pi \sqrt{1 + \sqrt{2}}$	< 3e-5	< 0.8 nm		
Transmission Asymmetries	$\Delta I/\bar{I} < 4\sqrt{N}$	<1e-5	< 1.2 %		
Pointing Jitter	$\alpha < 0.8(\lambda/D)\sqrt[4]{N}$	<1e-5	25 mas	$\frac{1}{22}\frac{\lambda}{D}$	
Differential Polz'n Rotation	$\phi < 2\sqrt{N}$	< 1e-5	< 0.36 deg.		
Differential s-p Polar. Delay	$\Delta < 4\sqrt{N}$	< 1e-5	< 0.72 deg.		

Keck requirements from null depth

		N=1e-4	N=1e-5	
	Constraint	Req.	Goal	Impactee
Differential Image Rotation	$\theta < 2\sqrt{N}$	< 1.1	< 0.36	LDL
Throughput Asymmetries	$\frac{I_{diff}}{\bar{I}} < 4\sqrt{N}$	< 4%	< 1.2%	Coatings
Strehl Fluctuations (1-S)	$\frac{\sigma_I}{\overline{I}} < 2\sqrt{N}$	< 2%	< 0.6 %	AO
Optical Path Errors	$x < \frac{\lambda}{\pi} \sqrt{N}$	< 32 nm	< 10 nm	FDL
Feed Forward Time	$\left \frac{t_{ff}}{t_{02}} < \left(2\sqrt{N}\right)^{6/5}\right $	< 0.7 msec	< 0.18 msec	Frng Trckr
Differential s-p Polar. Delay	$\frac{t_{02}}{\Delta < 4\sqrt{N}}$	< 2.3	< 0.72	Coatings

Sources of null degradation for wider bands

- Input lens decenter
- Input polarizer wedge angle
- Beamsplitter/compensator thickness or rotation mismatch
- Beamsplitter/AR coating phase shifts
- Unequal number of AR coating traversals (BS/Comp)
- Mirror protective coating asymmetry
- Extra reflections in filters, polarizers
- Intensity balance vs. wavelength

The Future: Control and Modulation Schemes

- Active Intensity Matching
- OPD Control:
 - Control one output by means of the second
 - Control one waveband by means of another
 - Control via metrology
- Signal Modulation Schemes:
 - Baseline rotation: fringes sweep across zodi/planet
 - Spatial chopping:
 - nulling removes star; chop on/off zodi/planet
 - OPD fringe scan after multiple baseline nulling

Intensity Matching

- Intensities in the two beams must be matched achromatically;
 - dielectric attenuators are excluded.
- Pointing and beam vignetting both affect intensity;
 - desirable to divorce pointing from intensity control (to the extent possible).
- Employ both beam vignetting and pointing to modify intensities:
 - Rooftop tilt actuator used for fine pointing/intensity control.
 - Modulate flux via rotating "Venetian blind" across aperture center.
 - Use variably shadowed obscuration, i.e., "scissors".

Optical OPD control

- Approach: The nuller has 2 outputs. Use 1 output to control the 2nd.
- How?
 - An *internal* nuller path delay causes the two nuller outputs to depart from null in opposite directions (opposite relative phases):

Output 1 has E_1 ahead of E_2 ; output 2 has E_2 ahead of E_1 .

- An *external* path delay (i.e., prior to the nulling combiner) *always* advances one beam relative to the other.
- :. The 2 types of offsets can be combined to leave one nuller output on null, and the second output at an OPD offset of $\lambda/4$.
- At the quadrature output, a large signal and a linear intensity-OPD relation are available for control. Control sensitivity at half-power output:

Keck Nulling Science Objectives

- Non-stellar MIR emission from nearby solar systems likely to be dominated by thermal exozodiacal emission from dusty disks, making planetary thermal emission difficult to detect.
- Prior to TPF, first probe exozodiacal flux levels around nearby stars with Keck-Keck single-baseline interferometry.
- Zodiacal/Stellar flux ratio @ 10 microns for our sun ≈ 1e-4.
- The 85 m K1-K2 baseline can characterize exozodi emission on sub-AU scales.

Angular sizes:

G-star diameter at 10 pc: 1 mas 1 AU at 10 pc: 100 mas K1-K2 10 mu fringe spacing: 24 mas Keck 10 mu beam diameter: 200 mas

Requirement: detection capability at the 10-solar-zodi equivalent

• Goal: 1-solar-zodi equivalent

SNR for exozodiacal signal at Keck

- Pessimistic case: $\lambda=10~\mu m$, $\Delta\lambda/\lambda=0.3$, emissivity = 0.65, total system efficiency = 0.046, cold throughput = 0.14, $A\Omega=\lambda^2$, 9 m diameter
- · Detection rates:
- G star at 10 pc (2 Kecks) = 9e7 photons/s
- Stellar leakage thru null = 9e4 photons/s
- 10 solar zodis (2 Kecks) = 8e4 photons/s
- Background (2 Kecks) = 1.8e10 photons/s
- Noise (1 sec)
- = 1.35e5 photons
- SNR (1 sec; 10 solar Zodi; including modulation) = 0.2
- SNR (4 hr; 10 solar Zodi; including modulation) = 25

Future Work

- · Broaden Bandwidth
- Move into Mid-Infrared (Cryogenic)
- Dual-polarization Nulling
- White-light Null stabilization
- Efficiency optimization
- Control architectures
- Component development (rooftops, beamsplitters, single-mode filters, AR coatings, etc.)
- Null at high altitude
- Null in space